Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation.
نویسندگان
چکیده
Although the signaling pathways underlying exercise-induced cardiac adaptation have been extensively studied, little is known about the molecular mechanisms that result in the response of the heart to pregnancy. The objective of this study was to define the morphological, functional, and gene expression patterns that define the hearts of pregnant mice, and to identify the signaling pathways that mediate this response. Mice were divided into three groups: nonpregnant diestrus control, midpregnancy, and late pregnancy. Both time points of pregnancy were associated with significant cardiac hypertrophy. The prosurvival signaling cascades of Akt and ERK1/2 were activated in the hearts of pregnant mice, while the stress kinase, p38, was decreased. Given the activation of Akt in pregnancy and its known role in cardiac hypertrophy, the hypertrophic response to pregnancy was tested in mice expressing a cardiac-specific activated (myristoylated) form of Akt (myrAkt) or a cardiac-specific constitutively active (antipathologic hypertrophic) form of its downstream target, glycogen synthase kinase 3β (caGSK3β). The pregnancy-induced hypertrophic responses of hearts from these mice were significantly attenuated. Finally, we tested whether pregnancy-associated sex hormones could induce hypertrophy and alter signaling pathways in isolated neonatal rat ventricular myocytes (NRVMs). In fact, progesterone, but not estradiol treatment increased NRVM cell size via phosphorylation of ERK1/2. Inhibition of MEK1 effectively blocked progesterone-induced cellular hypertrophy. Taken together, our study demonstrates that pregnancy-induced cardiac hypertrophy is mediated by activation of Akt and ERK1/2 pathways.
منابع مشابه
Calcitonin Gene-Related Peptide Regulates Cardiomyocyte Survival through Regulation of Oxidative Stress by PI3K/Akt and MAPK Signaling Pathways.
CGRP and specific CGRP receptors are found in the heart where they produce positive-inotropic and anti-apoptotic effects, key adaptations to exercise and cardiovascular disease. PI3K/Akt and MAPK signaling imbalances are associated with cardiomyocyte pathologies; however, the effects of CGRP on these pathways are unclear. Therefore, we hypothesized that CGRP modulates inotropic and apoptotic ad...
متن کاملModerate aerobic exercise training decreases middle-aged induced pathologic cardiac hypertrophy by improving Klotho expression, MAPK signaling pathway and oxidative stress status in Wistar rats
Objective(s): This study aimed to investigate the effect of aerobic training on serum levels of Klotho, cardiac tissue levels of H2O2 and phosphorylation of ERK1/2 and P38 as well as left ventricular internal diameter (LVID), the left ventricle wall thickness (LVWT) and fibrosis in middle-aged rats. Materials and Methods: Forty wistar rats, including young rats (n=10, 4 month-old) and middle-ag...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملAngiotensin-II type 1 receptor and NOX2 mediate TCF/LEF and CREB dependent WISP1 induction and cardiomyocyte hypertrophy.
Angiotensin-II (Ang-II) plays a key role in myocardial hypertrophy, remodeling and failure. We investigated whether Ang-II-induced cardiomyocyte hypertrophy is dependent on WNT1 inducible signaling pathway protein 1 (WISP1), a pro growth factor. Ang-II induced hypertrophy and WISP1 expression in neonatal rat cardiomyocytes (NRCM), effects that were significantly inhibited by pre-treatment with ...
متن کاملRole of p38 MAPK and MAPKAPK-2 in angiotensin II-induced Akt activation in vascular smooth muscle cells.
Angiotensin II activates a variety of signaling pathways in vascular smooth muscle cells (VSMCs), including the MAPKs and Akt, both of which are required for hypertrophy. However, little is known about the relationship between these kinases or about the upstream activators of Akt. In this study, we tested the hypothesis that the reactive oxygen species (ROS)-sensitive kinase p38 MAPK and its su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 112 9 شماره
صفحات -
تاریخ انتشار 2012